
A Second-Order Accurate Method for Solving the
Signed Distance Function Equation

Peter Schwartz
Phillip Colella

January 25, 2010

Abstract

We present a numerical method for computing the signed distance to a
piecewise-smooth surface defined as the zero set of a function. It is based
on a marching method by Kim [Kim01] and a hybrid discretization of first-
and second-order discretizations of the signed distance function equation. If
the solution is smooth at a point and at all of the points in the domain of
dependence of that point, the solution is second-order accurate; otherwise, the
method is first-order accurate, and computes the correct entropy solution in
the presence of kinks in the initial surface.

1 Introduction

Let Γ be a continuous, piecewise smooth D−1 – dimensional manifold in RD defined
implicitly as the zero set of a function, i.e. there is a continuous piecewise smooth φ
defined on some ε – neighborhood of Γ such that

Γ = {x : φ(x) = 0}. (1)

We also assume that ∇φ is bounded and piecewise smooth on Γ, and that that there
is a constant c > 0 such that |∇φ(x0)| ≥ c at all points, x0 ∈ Γ where ∇φ is defined.
At such points, n̂, the unit normal to Γ, is given by

n̂ =
∇φ
|∇φ|

Given such a surface Γ, we can define the signed distance function ψ

ψ(x) = smin
x′∈Γ
|x− x′| = sdist(x,Γ) (2)

1

where s is defined to be the positive on one side of Γ and negative on the other. If
x0 ∈ Γ, is a point at which the minimum in the right-hand side of (2) is achieved,
and Γ is smooth at that point, then, s = sign((x−x0) · ∇φ(x0)). If Γ is not smooth
at that point, then s is the single value taken on by sign((x − x′) · ∇φ(x′)) at all
points sufficiently close to x0 such that ∇φ(x′) is defined. In any case, s = ±1 on
RD − Γ and changes only at Γ.

If ψ(x) is smooth, then ψ satisfies the signed distance function equation.

|∇ψ(x)| = 1 (3)

In that case, solutions to the signed distance function equation satisfy the character-
istic equations.

dx

dσ
= w , x(0) = x0

dw

dσ
= 0 , w(0) = (∇ψ)(x0)

dψ

dσ
= 1 , ψ(0) = ψ(x(0))

where σ denotes arc length. These equations can be solved analytically to obtain

x(σ) = x(0) + σ(∇ψ)(x(0)) , w(σ) = (∇ψ)(x(0)) , ψ(σ) = ψ(x(0)) + σ (4)

i.e. the curves are straight lines in (x, ψ) space, while w = ∇ψ is constant along each
trajectory.

The characteristic form of the equations suggest that signed-distance functions can
be constructed incrementally. Given that ψ is known on Ωr = {x : |ψ(x)| ≤ r}, then
one can extend ψ to Ωr+δ using (4). It is easy to show that this reasoning extends
to non-smooth signed distance functions, i.e. ones defined by (2). Fast marching
methods [Set96, HPCD96] are numerical methods for computing the signed distance
function based on this observation. Fast marching methods have two components:

1. A discretization of the signed distance function equation that permits the cal-
culation of the signed distance at a given grid point by using a stencil of nearby
values that have already been computed.

2. A marching algorithm, which is a method for determining the order in which
grid values are to be computed.

For example, the method in [HPCD96, Set96] uses a first-order accurate discretiza-
tion of the signed distance function equation, and a marching algorithm based on
computing, at each step, the value of ψ that has the minimum magnitude among all
of the uncomputed values adjacent to valid values.

A number of problems in numerical simulation related to implicit function rep-
resentation of surfaces require the computation of the signed distance from a given

2

surface; see [Set99, AS95]. The motivating application for this paper is the use
of narrow-band level-set methods for representing the propagation of fronts in large-
scale fluid dynamics simulations combined with second-order accurate volume-of-fluid
methods [Col01] for discretizing the PDE on either side of the front. This imposes
two requirements that have not been simultaneously met by previous methods. The
first is the use of a marching method that is a good match for adaptive and par-
allel implementation based on patch-based domain decomposition. We impose this
requirement for compatibility with the software frameworks typically used for high-
performance implementations of block-structured adaptive grid methods. In such an
approach, the construction of a solution is based on steps that update independently
the points on a collection of rectangles whose disjoint union covers the domain, in-
terleaved with steps that communicate ghost cell data. The marching method in
[HPCD96, Set96, Dia69] does not fit into this category: it is specified as a serial
algorithm, in that the values on a grid are computed one at a time, with the next
value / location determined by the previously computed values. Not only is this a
poor match for the block-structured software frameworks, but it also imposes a se-
rial bottleneck in a parallel computation. The second requirement is that we obtain
a solution that is second-order accurate at all points whose domain of dependence
includes no singularities, since the volume-of-fluid discretizations requires that level
of accuracy [SBCL06, CGKM06, SAC+]. In all cases, the solution should converge
to a signed-distance function, even in regions whose domain of dependence include
discontinuities in the derivatives. While second-order accurate algorithms have been
proposed [Set99, Cho01, MG07, RS00, SSO94], not a great deal of attention has been
paid to distinguishing between converging and diverging characteristics for an initial
surface that contains kinks in the context of second-order accurate methods.

In the present work, we present a method that meets our requirements. We use
a variation on the Global Marching Method in [Kim01]. Given the values at grid
points in Ωr, we compute simultaneously and independently all of the grid values in
Ωr+δ, where δ is comparable to the mesh spacing. Since the method computes the
solution at a large number of points independently as local functions of the previously-
computed values in Ωr, the method maps naturally onto a block-structured domain-
decomposition implementation. Second, our discretization of the signed distance
function equation is analogous to the construction of the fluxes for a second-order
Godunov method for a scalar conservation law. It is a hybridization of a high-order
and low-order method, where the choice of hybridization coefficient is based on a
local curvature calculation. The high-order method is a straightforward difference
approximation to the characteristic form of the equations (4). The low-order method
is similar to the method in [HPCD96, Set96] but uses a least-squares approach for
computing ∇ψ based on different approximations depending on whether the charac-
teristics are locally converging or diverging. The choice of δ is based on a condition
analogous to a CFL condition under which all the points in the high-order stencil
should be available for computing the value of ψ at a grid point. The use of a least-

3

squares algorithm for approximating the gradient in the low-order method involving
all of the valid nearest neighbors maximizes the likelihood that there will be sufficient
valid points for computing the low-order estimate for ψ when it is needed.

The resulting method is second-order accurate in regions where the solution is
smooth, and characteristics trace back to portions of the original surface Γ that are
smooth. If there are kinks in the original surface or that form away from the original
surface due to convergence of characteristics, the method is first-order accurate in
the range of influence of the kinks. The method appears to provide solutions that
satisfy the entropy condition, correctly distinguishing between the two directions of
propagation from kinks in the original surface. The solution on the side of the surface
corresponding to converging characteristics propagates as a kink, while the solution
on the side corresponding to diverging characteristics takes the form of a centered
expansion fan.

2 Kim’s Global Marching Method

We discretize the problem to a grid consisting of equally spaced points in ZD.
We denote the grid-spacing by h. Given φi = φ(ih) where i ∈ ZD and ih in a
ε−neighborhood of Γ, we wish to compute

ψi ≈ ψ(ih) , |ψi| ≤ R. (5)

Our marching algorithm for computing such solutions is given in Figure 1. Here
the function E(ψ,Ωvalid, i) computes a value for ψ at i using only the set of values
{ψi} that have been computed on Ωvalid. E can be undefined, for example, if there are
insufficient points in a neighborhood of i to perform the computation. The quantity
σ is a CFL number for the marching method, and depends on the details of E . In
determining which points over which to iterate in the for loop, we have assumed that
σ < 1. The computation in the for loop can be performed in parallel using a domain-
decomposition strategy over the points in

⋃
s:|sd|≤1

(Ωvalid + s) − Ωvalid. In principle,

the method described here could iterate an arbitrarily large number of times before
updating r. For the discretization method described in the next section, we have
observed that numUpdate = 0 on the third iteration, so we could replace the while
loop by one performing a fixed number of iterations before updating r.

3 Discretizing the Signed Distance Function Equa-

tion

In this section, we define the discretization of the signed distance function equation
used to define E . It is computed as a linear combination of of a low-order(first-order)

4

Ωnew = ∅
r = ε+ σh
while r ≤ R do

for i ∈
⋃

s:|sd|≤1

(Ωvalid + s)− Ωvalid do

if E(ψ,v,Ωvalid, i) is defined then
(ψ̃i, ṽi) = E(ψ,v,Ωvalid, i)
if | ~ψi| ≤ r then

Ωnew += {i}
numUpdate += 1

end if
end if

end for
Ωvalid += Ωnew

ψ = ψ̃, v = ṽ on Ωnew

Ωnew = ∅
if numUpdate = 0 then
r += σh

end if
numUpdate = 0

end while

Figure 1: The Global Marching Method. In each iteration of the while loop, we
compute the solution to on points adjacent to Ωr−σh ⊆ Ωvalid ⊆ Ωr independently
of the other values being computed in that iteration. After there are no longer any
points to compute, we increment r → r + σh.

5

method and a high-order (second-order) method, with the hybridization coefficient
depending on the local curvature. This approach is analogous to that taken in con-
structing fluxes for hyperbolic conservation laws. The low-order method is based on a
least-squares discretization of the gradient that distinguishes between locally converg-
ing and diverging characteristics. The signed distance function equation (3) is used
to determine the free parameter in the gradient corresponding to the unknown value
of Ψ. This step is similar to that used in ([Set96]) and ([HPCD96]). The high-order
method is based on solving the characteristic form of the equations.

3.1 Least-Squares Discretization

Given a collection of points p ∈ P ⊂ ZD, we have the following relationship between
the values of the distance function, ψ, and the gradient:

1

h
(ψ(ih)− ψ((i + p)h)) = −p · ∇ψ +O(h) for p ∈ P (6)

If P has D linearly independent elements, then we can use (6) as the starting point
for deriving a first-order accurate method for computing solutions to (3). Given

ψi+p ≈ ψ((i + p)h) for p ∈ P (7)

we define ψ̃ ≈ ψ(ih), v ≈ (∇ψ)(ih) as satisfying a least squares solution to the
coupled equations:

Av = −1

h
(ψ̃Υ−Ψ) (8)

where the unknown ψ̃ is viewed as a free parameter, to be determined later, and

Ψ = (ψi+p1
, ψi+p2

, . . . ψi+pr
)T , (9)

A = (p1,p2, . . .pr)
T , and (10)

Υ = (1, 1, . . . 1)T . (11)

Since A is of rank D, the least squares solution to (8) is given by

v =− (ATA)−1AT
1

h
(ψ̃Υ−Ψ) (12)

=
(ψ̃ − ψ̄)

`
n̂− (ω2 − (ω2 · n̂)n̂)

where

ω1 = −1

h
(ATA)−1ATΥ , ω2 = −1

h
(ATA)−1ATΨ , ` =

1

||ω1||
, n̂ = ω1` (13)

ψ̄ = (ω2 · ω1)`2 = ψ(ih− `n̂) +O(h2)

6

We assume here that ω1 is not the zero vector. If ω1 = ω1(P) = 0, then the least-
squares problem does not produce a value for ψ̃, although the expression (12) for the
gradient is still well-defined.

Following [HPCD96, Set96], the condition ||v||2 = 1 leads to a quadratic equation
for ψ̃:

(ψ̃ − ψ̄)2 + `2||(ω2 − (ω2 · n̂)n̂)||2 = `2 (14)

If (14) has two real roots, we choose the root for which |ψ̃| > |ψ̄|. If (14) has no real
roots, we set ψ̃ = ψ̄.

We denote by L(ψ, i, h,P) the value of ψ̃ obtained from the least-squares algo-
rithm above. We can then define

EL(ψ,Ωvalid, i, h) = (ψL,vL) (15)

ψL = si min
B
|L(ψ, i, h,B)| if κi < 0 or ω1 = 0 (16)

= L(ψ, i, h,P) if κi ≥ 0 and ω1 6= 0 (17)

P = U ∩ (Ωvalid − i) , (A,Ψ,ω1) = (A(P),Ψ(P),ω1(P)) (18)

vL = −(AAT)−1AT
1

h
(ψLΥ−Ψ) (19)

The minimum in (16) is over the collection of all sets B of pairs of adjacent points
(2D) / 2x2 blocks of points (3D) contained in U such that B + i ⊂ Ωvalid. The
quantity κ is a local estimate of the curvature.

κi = min
t
si(∆

hψ)i+t (20)

where ∆h is the 2D + 1-point centered-difference discretization of Laplacian, and the
minimum is taken over all points t ∈ [−2 . . . 2]D such that the stencil for ∆h evaluated
at i + t is contained in Ωvalid. The minimum assumption for EL to be defined is that
at least one of the B in (16) is defined, and at least one of the ∆hψ in (20) is defined.
Otherwise, EL is undefined.

We use the two different least-squares algorithm depending on the sign of the
curvature in order to obtain the correct distance function in the neighborhood of a
kink. If the curvature is negative, the characteristics are converging, and the distance
function is the minimum over as many candidates as possible based on using the least-
squares algorithm on 2D−1 points, analogous to choosing the minimum over multiple
distinct characteristics that might be reaching the same point. If the curvature is
positive, the characteristics are diverging, and the use of the single stencil involving
all of the valid points in U + i leads to interpolated intermediate values for ψ̄ and
n̂, analogous to sampling inside a centered rarefaction fan in computing a flux for
Godunov’s method at a sonic point.

7

3.2 A Second-Order Accurate Method

We define a function that computes a second order approximation to the distance
function and the gradient of the distance function. In the following, let π = ψ,v
denote the field that we wish to compute at i /∈ Ωvalid, assuming that π is known on
Ωvalid. We also assume that we know v̂ ≈ (∇ψ)(ih). The calculation of

π̄ = Q(π, i, v̂, h) ≈ π(ih) (21)

is given as follows.

1. Compute x̄, the first point along the ray {ih − siv̂δ : δ > 0} that intersects a
coordinate plane of gridpoints.

x̄ = ih− sih
v̂

v̂max
(22)

where v̂max is the component of v̂ whose magnitude is largest, with dmax the
corresponding coordinate direction.

2. Compute a quadratic interpolant in the coordinate plane containing x̄.

j =

⌊
x̄

h
− 1

2
(u− edmax)

⌋
, ȳ = x̄− jh (23)

π̄ = πj +
∑

d6=dmax

(
∂π

∂xd
ȳd +

1

2

∂2π

∂x2
d

ȳ2
d

)
+

∂2π

∂xd1∂xd2
ȳd1 ȳd2 (24)

where all of the derivatives are evaluated at jh. The last term in (24) is defined
only for D = 3 and d1 6= d2, d1, d2 6= dmax. We denote by ed the unit vector in
the dth coordinate direction, and u = (1 . . . 1), both elements of ZD

The derivatives appearing in the sum in (24) are computed using second-order
accurate centered differences at jh, assuming j, j±ed ∈ Ωvalid. The mixed derivative
is approximated by the average of centered differences:

∂2π

∂xd1∂xd2
≈ 1

N

∑
(D2

d1,d2
π)j+ 1

2
s (25)

where

(D2
d1,d2

π)k+ 1
2
ed1+ 1

2
ed1 =

1

h2
(πk + πk+ed1+ed1 − πk+ed1 − πk+ed2) (26)

is defined if k,k +ed1 ,k +ed2 ,k +ed1 +ed2 are all in Ωvalid. The sum in (25) is taken
over all s of the form α1e

d1 + α2e
d2 , α1 = ±1, α2 = ±1 for which (D2

d1,d2
) is defined,

and N is the number of terms in the sum.

8

Given the function Q defined above, we can define a second-order accurate dis-
cretization of the characteristic form of the equations (4) at ih. We iterate twice to
obtain a sufficiently accurate computation of v, computing v̂ at the point i using the
least-squares algorithm defined in the previous section, and then

v̂ := Q(v,Ωvalid, i, v̂, h) , vH = Q(v,Ωvalid, i, v̂, h) (27)

We then use vH to compute ψH .

ψH = Q(ψ,Ωvalid, i, v̂H , h) + sih

∣∣∣∣ vH

vHmax

∣∣∣∣ (28)

We denote by EH the resulting second-order accurate method for computing ψ,v.

EH(φ,v,Ωvalid, i) ≡ (ψH ,vH). (29)

If the low-order method is defined, and the points required for the various evaluations
of Q are defined, then (29) is defined. Otherwise, it is undefined.

3.3 Hybridization

We hybridize the low- and high-order methods based on the magnitude of the curva-
ture. Assuming that both EL and EH are defined, we compute

(ψL,vL) = EL(ψ,v,Ωvalid, i) (30)

(ψH ,vH) = EH(ψ,v,Ωvalid, i) (31)

E(ψ,v,Ωvalid, i) =
(
(1− ηi)ψ

H + ηiψ
L, (1− η2

i)vH + η2
i v

L)
)

(32)

where the hybridization parameter η is given by

ηi =

{
1 if h|∆hψ|max > C
h
C
|∆hψ|max otherwise,

(33)

|∆hψ|max = max
t
|(∆hψ)i+t| (34)

where the range over which the max is taken is the same as in (20). If the
high-order value EH(ψ,v,Ωvalid, i) is not defined, but the low-order value is, then
E(ψ,v,Ωvalid, i) = EL(ψ,v,Ωvalid, i). If the low order value is not defined, then
E(ψ,v,Ωvalid, i) is not defined. The constant C is an empirically determined pa-
rameter, independent of h. In our numerical experiments, C = 1.

If σ < 1√
5
, and we replace the values of ψ, v on grid points in Ωr with those of a

smooth distance function ψe, it is possible to show that, for sufficiently small h, both
EH and EL are defined for all grid points in Ωr+σh and that

ψHi = ψe(ih) +O(h3) , vH = ∇ψe(ih) +O(h3) (35)

ψLi = ψe(ih) +O(h2) , vL = ∇ψe(ih) +O(h) (36)

9

from which it follows that

E(ψ,v,Ωvalid, i) = (ψe(ih),∇ψe(ih)) +O(h3). (37)

Thus we expect that the global error in our solution will be O(h2). This also explains
why we use η2, rather than η, to hybridize the gradient calculation. Otherwise, we
would introduce an O(h2) contribution to the error in the gradient at every step,
leading to a first-order accurate method for the gradient, and hence for ψ. In the
neighborhood of kinks in the level sets of ψ, the value of the curvature is O(h−1),
and we will use the low-order method, leading to a first-order accurate method in the
range of influence of the kinks.

3.4 Initialization

We now describe the method we use to provide test problems with an initial narrow
band three or four cells wide. We are given an initial representation of the surface
by a discretized implicit function, from which we construct the distance function and
the gradient of the distance function an O(h) distance. If the surface is smooth,
then our initialization procedure is an O(h2) approximation to the distance function.
If the characteristics cross near the surface or the surface is not smooth, then the
initialization reduces to a first-order accurate method within the range of influence
of the kink.

We require some more notation. Denote by (G0φ) the centered difference approx-
imation to the gradient of φ. Given a grid location i, let d = φi

||(G0φ)i||
. Let P ⊂ Ω

denote i and its neighbors. Let

mi = min
p∈P
||(G0φ)p|| (38)

Mi = max
p∈P
||(G0φ)p|| (39)

We choose a non-dimensional parameter, ε, independent of h and atempt to detect a
discontinuity in the gradient by checking whether M exceeds m by an amount greater
than ε. If so, we make a robust but lower order estimate of the gradient:

if 1− mi

Mi

≥ ε then (40)

v = (G0φ)p : ||(G0φ)p|| = Mi (41)

In our numerical experiments, ε = 1
2
√

2
. Alternatively, if

1− mi

Mi

< ε, (42)

then we define a point,

x0 = ih− d (G0φ)i

||(G0φ)i||
(43)

10

Table 1: Solution error for 2D Curve in Polar Coordinates: h = 1
100
, 1

200

L1 Norm rate L2 Norm rate L∞ Norm rate
4.4566e-02 1.0240e-02 2.1393e-02
1.0592e-02 2.07 2.4083e-03 2.08 5.9743e-03 1.84

At x0 we bi-quadratically interpolate an estimate of the gradient v. Finally, we
use root-finding in the direction v to make an estimate of the distance.

4 Numerical Results

For our fast marching problems, we always compute the max norm of the error.
Where useful, we also compute the the L1 and the L2- norm of the solution error.

For a discrete variable, ζ, the max norm is given by

||ζ||∞ = max
i
|ζi|. (44)

The Lp-norm is given by

||ζ||p =

(∑
i

|(ζi)phD

) 1
p

(45)

For all of the test problems that follow we have used a marching parameter of
σ = 1

2
√

5
.

Our first test problem uses the implicit function r = 2 cos 4θ + 7. The domain
has a lower left corner with coordinates (−10,−10,−10) and an upper right corner
with coordinates (10, 10, 10). The initial bandwidth is approximately six grid cells
wide at all resolutions. The final bandwidth is approximately 1.2. Calculations were
performed on grids with h = 1

100
, 1

200
, and 1

400
. Richardson error extrapolation was

used to calculate the results presented in Table 1. The solution is shown in Figure 2
and the error is shown in Figure 3.

Our second test problem has as its zero-level set a surface of revolution. The
domain has a lower left corner with coordinates (−10,−10,−10) and an upper right
corner with coordinates (10, 10, 10). The surface is centered at (0, 0, 0) and obtained
by rotating the function r = 2 cos 2θ + 7 around the y-axis. The initial bandwidth
is approximately six grid cells wide at all resolutions. The final bandwidth is 1.5.
Calculations were performed on grids with h = 1

100
, 1

200
, and 1

400
. Richardson error

estimation was used to calculate the results presented in Table 2. Slices of the error
are presented in Figure 4.

Our next example uses as an implicit function whose zero set is the surface of
a cube. In this case, to test the robustness of the algorithm we initialized the an-

11

Figure 2: Curve in Polar Coordinates

Table 2: Solution Error for Surface of Revolution: h = 1
100
, 1

200

L1 Norm rate L2 Norm rate L∞ Norm rate
7.0725 e-01 1.5893 e-02 7.2842e-04
1.2275 e-01 2.52 3.0446 e-03 2.38 1.813e-04 2.00

12

Figure 3: Error for a Curve given in Polar Coordinates

13

Figure 4: Slices of the error for a Surface of Revolution

14

Table 3: Solution error for Distance to a Cube : h = 1
50
, 1

100
, 1

200

L∞ Norm rate
.00493
.00260 .92
.0013 1.0

Table 4: Solution error for distance to a union of parallelopipeds: h = 1
50
, 1

100
, 1

200

L∞ Norm rate
.00120 .
.000580 1.05

nular region to the wrong weak solution of the signed distance function equation.
In particular, where the characteristics diverge we do not round the corners in the
initial narrow band. Nonetheless our algorithm extends this initial data to a distance
function.

In this example, the initial band has a diameter of about four grid cells at the
coarse resolution. The final bandwidth is about two and one half times the diame-
ter of the initial band. Since the only error occurs in places where the gradient is
discontinuous, we present the max norm of the error in Table 3

Our final example uses an implicit function generated by taking the union of
parallelopipeds. The zero-set is in the shape of a cube whose corners are removed.
Two dimensional slices are in the shape of a cross. This example tests cases where
characteristics meet at a corner as well cases where the characteristics diverge at a
corner.

In this problem the domain has a lower left corner with coordinates (0, 0) and an
upper right corner with coordinates (1, 1). The initial band is approximately six cells
in diameter at all resolutions. The final bandwidth is 0.15 Since the errors only occur
in places where the gradient is discontinuous, we present the max norm of the error
in Table(4). The error is in Figure (5). Three isosurfaces, including the zero level set,
are presented in Figures (6), (7) and (8).

5 Conclusion

We have described a numerical method for solving the signed distance function equa-
tion that is second-order accurate at points whose domain of dependence includes no
singularities, which is useful for second-order accurate volume-of-fluid discretizations.

15

Figure 5: Slices of the error for a union of parallelopipeds

16

Figure 6: The zero isosurface of the union of parallelopipeds

17

Figure 7: An interior isosurface (at a distance = -.12 from the zero set) of the union
of parallelopipeds

18

Figure 8: An exterior isosurface (at a distance = .12 from the zero set) of the union
of parallelopipeds

19

A salient feature of our algorithm is the hybridization of a high-order and low-order
method, where the choice of hybridization coefficient is based on a local curvature
calculation. The resulting calculation appears to provide solutions that satisfy the
entropy condition, correctly distinguishing between the two directions of propagation
from kinks in the original surface. In addition, we use a marching method that is a
good match for adaptive and parallel implementation based on patch-based domain
decomposition, which is the software framework typically used for high-performance
implementations of block-structured adaptive grid methods.

Our future work will focus on tracking moving fronts in hyperbolic problems. In
these problems, the motion of the interface naturally decomposes into advection by
a vector velocity combined with motion of the interface normal to itself at a known
scalar speed. The importance of the signed distance function equation may be ob-
served in the special case where the vector velocity is zero and the scalar speed is
spatially constant. In this context, a method of solving the Hamilton-Jacobi reduces
to a method for solving signed distance function equation, up to a relabeling of con-
tours, which leads to the conclusion that numerical methods for Hamilton-Jacobi can
be no more accurate than the associated solution to the signed distance function
equation. Considering the general front-tracking problem, one may begin by extend-
ing velocites and scalar speeds in the normal direction off the interface by solving the
transport equation, as was done in [AS99]. Established algorithms for advection may
be employed for the velocity component of the motion, while an algorithm for solving
the signed distance function equation may be employed for motion given by scalar
speeds.

References

[AS95] D. Adalsteinsson and J.A. Sethian. A fast level set method for propagat-
ing interfaces. J. Comput. Phys., 118:269, 1995.

[AS99] D. Adalsteinsson and J.A. Sethian. A fast construction of extension ve-
locities in level set methods. J. Comput. Phys., 148:2–22, 1999.

[CGKM06] P. Colella, D. T. Graves, B. Keen, and D. Modiano. A Cartesian grid
embedded boundary method for hyperbolic conservation laws. J. Comput.
Phys., 211:347–66, 2006.

[Cho01] D.L. Chopp. Some improvements of the fast marching method. SIAM
Journal on Scientific Computing, 23(1):230–44, 2001.

[Col01] P. Colella. Volume-of-fluid methods for partial differential equations. In:
E.F. Toro, Editor, Godunov Methods: Theory and Applications, Kluwer
Academic/Plenum Publishers, New York, 3, 2001.

20

[Dia69] R. Dial. Algorithm 360: Shortest path forest with topological ordering.
Communications of the ACM, 12:632–633, 1969.

[HPCD96] J. Helmsen, E.G. Puckett, P. Colella, and M. Dorr. Two new methods
for simulating photolithography development. International Symposium
on Microlithography, 2726:503–555, 1996.

[Kim01] S. Kim. An O(N) level set method for eikonal equations. SIAM J. Sci.
Computing, 22:2178–2193, 2001.

[MG07] Chohong Min and Frederic Gibou. A second order accurate level set
method on non-graded adaptive cartesian grids. J. Comput. Phys.,
225:300–321, 2007.

[RS00] Giovanni Russo and Peter Smereka. A remark on computing distance
functions. J. Comput. Phys., 163:51–67, 2000.

[SAC+] P. Schwartz, D. Adalsteinsson, P. Colella, A. Arkin, , and M. Onsum.
Numerical computation of diffusion on a surface. Proc. Natl. Aca. Sci.,
102.

[SBCL06] P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid
embedded boundary method for the heat equation and poisson’s equation
in three dimensions. J. Comput. Phys., 211(2):531–550, 2006.

[Set96] J.A. Sethian. A fast marching method for monotonically advancing fronts.
Proc. Natl. Aca. Sci., 93:1591, 1996.

[Set99] J.A. Sethian. Fast marching methods. SIAM Review, 41:199–235, 1999.

[SSO94] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach
for computing solutions to incompressible two-phase flow. J. Comput.
Phys., 114:146–159, 1994.

21

